

The Effect of FPGA Size on Software Speedup from
Hardware/Software Partitioning

Shawn Nematbakhsh, Greg Stitt, and Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside

{snematbakhsh | gstitt | vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid
*Also with the Center for Embedded Computer Systems at UC Irvine

Contact Information:

Shawn Nematbakhsh, phone: 909-787-2373 fax: 909-787-4643 e-mail: snematbakhsh@cs.ucr.edu

Greg Stitt, phone: 909-787-2373 fax: 909-787-4643 e-mail: gstitt@cs.ucr.edu

Frank Vahid, phone: 909-787-4710 fax: 909-787-4643 e-mail: vahid@cs.ucr.edu

The Effect of FPGA Size on Software Speedup from
Hardware/Software Partitioning

Shawn Nematbakhsh, Greg Stitt, and Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside

{snematbakhsh | gstitt І vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid
*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
We examine the relationship between FPGA size and
software speedup when an on-chip FPGA is used to
implement critical software loops through
hardware/software partitioning. We studied seven
benchmark programs taken from Mediabench and
Netbench. We profiled the programs on the SimpleScalar
architecture, rewrote the critical loops in VHDL,
synthesized and mapped those loops to a Xilinx FPGA,
and calculated the gate requirements and performance
speedups. We created several versions of each program,
each version having successively more critical code
moved to the FPGA, to see the relationship between size
and speedup. Our results show that surprisingly few
FPGA gates are needed to obtain most of the reasonably
achievable speedup – an average speedup of 6x was
obtained with only about 20,000 gates.

Keywords
Hardware/software partitioning, system-on-a-chip,
platforms, configurable logic, FPGA, software speedup,
codesign.

1. Introduction
Single chip platforms incorporating a microprocessor
and FPGA are growing in popularity. Several such
platforms have become available commercially,
including Atmel’s FPSLIC family [2], Triscend’s E5 and
A7 [13], Xilinx’s Virtex II Pro [16], and Altera’s
Excalibur line [1].

Moving frequently executed pieces of code from
software to an FPGA can increase the speed of the
system [4][9][10][15]. These speedups can even translate
to significant energy savings [5][12].

Such speedups are typically due to the fact that a
large set of software instructions, requiring perhaps tens
of hundreds of clocks cycles, can often be executed in

custom hardware using just a few clock cycles. The
reduction in cycles comes primarily from executing
instructions in parallel and from loop unrolling. Some
cases allow for more speedup than others. For example, a
function that does many bit operations dependant on one
another could be sped up greatly. A function that has to
access memory every other cycle has less potential to be
sped up.

In many programs, a few small sections of code may
account for a very large portion of the total execution
time. This situation is advantageous for partitioning,
since we need only speed up those few critical sections to
gain most of the reasonably available speedup. Most of
the program can remain in software - moving everything
to gates would require an FPGA with unreasonable size
and power requirements for most applications.

This paper examines the relationship between FPGA
size and software speedup for several benchmark
software applications selected from the Mediabench [6]
and Netbench [8] benchmark suites. We show that
relatively few gates are required to obtain most of the
reasonably achievable speedup.

2. Hardware/Software Partitioning Method
We considered a straightforward approach to
hardware/software partitioning, in which critical
software loops are moved to an on-chip FPGA. Such an
approach can be readily automated, and in fact several
prototype and commercial tools, like Synopys’ Nimble
Compiler attempt [7] and Proceler [11], perform such
partitioning. We point out that approaches that actually
rewrite the algorithm for hardware execution will result
in much greater speedups while requiring much more
hardware. Although we actually consider both critical
loop and critical subroutines, we use the term “loops”
throughout the paper for simplicity.

Our target system-on-a-chip architecture is shown in
Figure 1, based on the Triscend E5 architecture. When a
partitioned section of code is encountered, the
microprocessor enables the FPGA. The FPGA then
fetches the needed data from memory across the 32-bit
bus, performs a computation, writes back to memory
once completed, and indicates completion to the
processor.

We compiled each benchmark to a SimpleScalar [3]
binary. We then ran SimpleScalar’s sim-cache to
generate a trace file, and objdump to convert the binary
to human-readable assembly. We recorded the number of
cycles in software as cycles_s.

We created multiple hardware/software versions of
some benchmarks, each version successively requiring
more hardware gates. For each version, we computed
cycles as cycles_hs. We computed speedup as cycles_s /
cycles_hs. We assumed the microprocessor and FPGA
used the same clock frequency, as is the case in
Triscend’s E5 and A7 devices [13]. We assumed the
microprocessor had a cycles per instruction (CPI) of 1.5,
which we observed to be a typical CPI when running a
microprocessor simulator.

The hardware/software versions were created as
follows: First, to detect critical loops, we used a tool
called LOOAN (Loop Analysis) [14], which takes the
output of objdump and the trace file, and determines the
portions of code that consume the most CPU time. To
map loops to hardware, we rewrote the critical sections
of code in VHDL, synthesized, and then mapped to a
Xilinx xcv100e FPGA using Xilinx’s ISE Webpack [16].
This tool directly reported the number of gates and cycle
information for a design.

For memory accesses, we assumed that the FPGA
could access any location in memory in the same time
required by the microprocessor - as is the case with
Triscend’s devices. Since the memory locations of
variables were pre-known in the benchmarks, we hard
coded those addresses into the FPGA.

In converting the commonly executed loops to
VHDL, we performed loop unrolling wherever possible,
subject to the limitation that the FPGA could be clocked
at a minimum of 40 MHz - so in some cases we could not
unroll completely.

3. FPGA Size and Speedup
3.1 Experiments
Table 1 summarizes the benchmarks and our
hardware/software partitioning results. The Cycles
column displays the total number of software cycles the
benchmarks required without any partitioning. # is the
number we’ve assigned to the loop, for reference later.
Critical Section lists the function in which the critical
loop was found. Lines reports the number of lines in C
code of the critical loop. Execution time lists the
percentage of execution time in software that was spent
in the critical loop. Cumulative Speedup shows the
speedup we observed after moving the critical loops to
hardware. Ideal Speedup reports the best possible case
for speedup, obtained if all critical loops in hardware
were reduced to zero time. Cumulative Gates displays the
number of gates used by the FPGA to implement the
critical loops in hardware. Due to time constraints, we
did not always move multiple loops to hardware. Only if
the execution time of subsequent loops looked promising
for speedup did we implemented them. We’ll now
summarize each benchmark briefly.

G721 is an audio format that is used for encoding
voice. Here we found one loop that consumed 44.5% of
execution and another that consumed 10.1% of
execution. The first loop, inside the quan function, was a
short for loop that searched through an array. The second
loop, update, was a longer for loop that did some bit
operations.

ADPCM, an algorithm used for speech compression,
was a unique case because we discovered that a single
loop was consuming 99.9% of execution time. We sped
this loop up, allowing us to obtain a speedup of 27 with
only 14,000 gates.

Pegwit is a program used for public key encryption.
Here we found two loops that each consumed about 35%
of execution time. In addition, we found two other loops
consumed about 4% and 3% of execution time
respectively. 4% and 3% do not look like promising
loops to move to hardware, but once the two 35% loops
were moved to hardware, the two smaller loops
represented a significant portion of remaining execution
time.

DH is another public key encryption application. This
benchmark has three similar functions consuming the
most execution time. The NN_DigitMult function
performed bit multiplication on 32-bit integers. The
NN_SubDigitMult function performed bit subtraction,
and the NN_AddDigitMult did shifts and adds on several
integers. These functions were easy to speed up in
hardware.

Figure 1: System-on-a-chip architecture.

FPGA

B
us

Microprocessor

M

Memory

SOC

done

start

MD5 is a checksum algorithm used on network
packets. The most critical section of the MD5 benchmark
was the MD5_transform function. This was a very long
function, however, and took 90,000 gates to implement
in hardware. For this reason, we present the partition
with that function in hardware last in the graphs and
tables, after two other loops that have a better speedup to
gate ratio.

In TL, a benchmark that does table lookups, there was
a single for loop that consumed 50.9% of execution. This
loop took eight cycles per iteration in software, and was
reduced to only one in hardware.

URL is a program that does URL packet switching.
This benchmark had a single loop that consumed 80% of
execution time. This for loop took 16 cycles per iteration
in software, but was reduced to a single cycle in
hardware.

Figure 2 shows the speedup of all seven benchmarks
as critical sections are moved to the FPGA. The
horizontal axis shows the number of FPGA gates
required by the critical loops in hardware, while the
vertical axis shows the cumulative speedup.

Table 1: Speedup and FPGA size for critical loops.

Benchm ark Cycles # Critical Section Lines Execution % Cum . Speedup Ideal Speedup Cum . Gates
G721 838,230,001 1 quan 3 44.5% 1.8 1.8 1,307

838,230,001 2 update 12 10.1% 2.2 2.2 5,811
838,230,001 3 predictor_zero 2 4.3% N/A N/A N/A

ADPCM 32,894,094 1 coder 43 99.9% 27.2 1175.5 14,132
32,894,094 2 m ain 10 3.6E-04 N/A N/A N/A
32,894,094 3 read N/A 9.3E-05 N/A N/A N/A

Pegwit 42,752,919 1 gfAddMul 5 35.4% 1.5 1.6 4,301
42,752,919 2 gfMultiply 6 35.4% 3.0 3.4 13,419
42,752,919 3 gfReduce 5 4.2% 3.4 4.0 15,678
42,752,919 4 gfAdd 3 2.8% 3.7 4.5 18,150

DH 1,793,032,156 1 NN_DigitMult 16 40.4% 1.6 1.7 15,308
1,793,032,156 2 NN_SubDigitMult 10 17.9% 2.3 2.4 20,792
1,793,032,156 3 NN_AddDigitMult 10 16.9% 3.7 4.0 21,383

MD5 5,374,033 1 MD5_m em set 2 13.4% 1.1 1.2 2,036
5,374,033 2 Decode 3 11.0% 1.3 1.3 2,228
5,374,033 3 MD5_Trans form 71 32.3% 2.1 2.3 90,074

TL 57,412,470 1 rn_addm ask 2 50.9% 1.9 2.0 5,478
57,412,470 2 rn_search 7 4.4% N/A N/A N/A
57,412,470 3 _wordcopy_fwd_alligned N/A 4.0% N/A N/A N/A

URL 27,353,017 1 calculate_bm_table 2 80.0% 4.3 5.0 2,929
27,353,017 2 calculate_bm_table 3 4.0% N/A N/A N/A
27,353,017 3 find_lcs 5 3.8% N/A N/A N/A

Figure 2: The relationship between FPGA size and speedup for the examined benchmarks, obtained through hardware/software partitioning.

1.0

2.0

3.0

4.0

5.0

0 5,000 10,000 15,000 20,000 25,000

Gates

S
p

ee
d

u
p

G721(MB)

ADPCM(MB)

PEGWIT(MB)

DH(NB)

MD5(NB)

TL(NB)

URL(NB)

27.2

2.05 at 90,000

3.2 Discussion
The first observation we might make is that good
speedup can be obtained with a relatively small amount
of FPGA. Figure 3 shows the average speedups obtained
for a given size of FPGA. We see that with only 20,000
gates, we obtain an average speedup of 6.0; 25,000 gates
yields a speedup of 6.3. Furthermore, we see in Figure 2
that for the adpcm benchmark, a very good speedup of
27.2 is obtained, with less than 15,000 gates.

Because the speedup for adpcm is much higher than
the other examples, we show the average speedups versus
FPGA size in Figure 4, this time excluding the
benchmarks with the highest and lowest speedups. We
still see good speedups of 2.7x with 20,000 gates, and
3.1x with 25,000 gates.

A second observation we might make from the data
in Table 1 and Figure 2 is that most speedup is obtained
by moving the first few critical loops to FPGA - moving
additional loops yields little additional speedup
improvement. To see this trend more clearly, we
continued the plot of Figure 2 for the top ten loops of
each benchmark, assuming the remaining loops could be
ideally sped up, meaning they could be implemented to
execute in hardware in zero time. The results are shown
in Figure 5. The vertical axis shows the cumulative ideal
speedup as loops are moved to hardware. Shadowed
points represent actual data, and non-shadowed points
are ideal data. We can indeed see a leveling off effect.
The biggest jump in speedup occurs within the first few
loops. After that, subsequent loops tend to increase the

speedup at a slower rate. Keep in mind that actual
speedups for the latter loops would be even less – the
figure shows ideal speedups for those latter loops. The
implications of this observation are good for
hardware/software partitioning - by moving just the most
critical loops, we gain most of the possible speedup.

Table 2 lists the ideal speedups that would be
obtained if every critical loop could be implemented in
hardware in zero time. We see that even in the
completely idea situation, the first few loops give most of
the speedup.

4. Conclusion
Partitioning critical software loops onto an on-chip
FPGA yields impressive software speedups of 6.3x using
a modestly sized FPGA of about 25,000 gates in the
Mediabench and Netbench examples we tested. Most of
the readily available speedup can be achieved within this
25,000 gate threshold. The implication of the speedup
data for platform designers is that including even a
modest amount of FPGA can yield good software
improvements. As feature sizes continue to scale down,
adding a 40,000 gate equivalent FPGA onto a
microprocessor chip may become less and less
significant. Furthermore, the implication for embedded
system designers is that performing a straightforward
hardware/software partitioning may be well worth the
effort.

Figure 3: Average speedup for different FPGA sizes.

1
2
3
4
5
6
7

5,000 10,000 15,000 20,000 25,000

FPGA Size(gates)

A
ve

ra
ge

 S
pe

ed
up

Table 2: Completely ideal speedup as loops are moved to hardware.

Benchmark
1 2 3 4 5 6 7 8 9 10

G721 1.80 2.44 3.24 3.76 4.26 4.82 5.12 5.38 5.66 5.87
ADPCM 854.40 1229.39 1388.79 1594.01 1699.84 1806.98 1912.74 1994.41 2067.18 2127.34
Pegwit 1.55 3.42 3.94 4.42 4.97 5.43 5.99 6.58 7.18 7.88
DH 1.68 2.40 4.03 5.58 6.41 7.25 8.32 9.00 9.80 10.69
MD5 1.48 1.84 2.31 2.44 2.57 2.67 2.76 2.85 2.90 2.95
TL 2.04 2.24 2.46 2.68 2.95 3.26 3.58 3.96 4.41 4.97
URL 5.00 6.25 8.18 9.91 10.32 10.76 11.23 11.72 12.21 12.74

Ideal Cumulative Speedup with Subsequent Loops

Figure 4: Average speedup for different FPGA sizes, excluding
the best and worst of our benchmarks.

1

2

3

4

5,000 10,000 15,000 20,000 25,000

FPGA Size(gates)

A
ve

ra
ge

 S
pe

ed
up

References
[1] Altera, http://www.altera.com.

[2] Atmel, http://www.atmel.com.

[3] D. Burger and T.M. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin-Madison Computer
Sciences Department Technical Repor #1342. June, 1997.

[4] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a
reconfigurable coprocessor. IEEE Symposium on FPGAs
Valley, CA, April 1997.

[5] J. Henkel. A low power hardware/software partitioning
approach for core-based embedded systems. Proceedings
of the 36th ACM/IEEE conference on Design automation
conference, pp. 122 – 127,1999.

[6] C. Lee, M. Potkonjak and W. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems, MICRO 1997.

[7] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.
Stockwood. Hardware-software co-design of embedded
reconfigurable architectures. IEEE/ACM Design
Automation Conference, pp 507-512, 2000.

[8] G. Memik, B. Mangione-Smith, W. Hu. Netbench: A
Benchmarking Suite for Network Processors. CARES
Technical Report 2001_2_01.

[9] W. Najjar, B. Draper, A.P.W. Böhm, R. Beveridge. The
Cameron Project: High-Level Programming of Image
Processing Applications on Reconfigurable Computing
Machines. In PACT’98 - Workshop on Reconfigurable
Computing. Paris, October 1998.

[10] K. A. Olukotun, R. Helaihel, J. Levitt, R. Ramirez. A
software-hardware cosynthesis approach to digital system
simulation. IEEE Micro, pp. 48-58, August 1994.

[11] Proceler, http://www.proceler.com.

[12] G. Stitt, B. Grattan, J. Villarreal, F. Vahid. Using On-
Chip Configurable Logic to Reduce Embedded System
Software Energy. IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa
Valley, April 2002.

[13] Triscend, http://www.triscend.com.

[14] J. Villarreal, R. Lysecky, S. Cotterell, and F. Vahid. Loop
Analysis of Embedded Applications. UC Riverside
Technical Report UCR-CSE-01-03, 2001.

[15] M. Wirthlin, B. Hutchings. A dynamic instruction set
computer. Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines, 1995, pg. 99-107.

[16] Xilinx, http://www.xilinx.com.

Figure 5: Actual speedups (shadowed) followed by ideal speedups as loops are moved to hardware.

1

27 27 27 28 28 28 28 28 28 28

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Loop Number

S
p

ee
d

u
p

G721(MB)

ADPCM(MB)

PEGWIT(MB)

DH(NB)

MD5(NB)

TL(NB)

URL(NB)

